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Abstract—Spectral unmixing (SU), which refers to extract-
ing basic features (i.e., endmembers) at the subpixel level and
calculating the corresponding proportion (i.e., abundances), has
become a major preprocessing technique for hyperspectral image
analysis. In this article, we propose a novel technique network
for unsupervised unmixing based on the adversarial autoencoder,
termed as BNNet. To enhance the model’s applicability and
generalization performance, in the construction of the network’s
nonlinear framework, the model decoder is designed as a univer-
sal spectral mixing model consisting of linear mixture components
and additive nonlinear mixture components. This allows the
network to adaptively learn the linear and nonlinear proportion
weights in the scenario. The specific nonlinear mixing parameters
are learned from the original data, rather than relying on fixed
model assumptions.

I. INTRODUCTION

Hyperspectral unmixing is a crucial task in analyzing hyper-
spectral data, which aims to estimate the abundance fractions
of different materials (endmembers) present in each pixel.
Traditional unmixing methods often assume linear mixing
models, which may not accurately represent the complex
nonlinear mixing behavior in real-world scenarios[1]. In this
study, a novel approach combining deep autoencoder networks
and superpixel segmentation is proposed for hyperspectral
unmixing[2].

II. THE PROPOSED METHOD

The proposed method consists of two main steps: superpixel
segmentation and deep autoencoder network-based unmixing.
Superpixel segmentation is employed to group pixels with
similar spectral characteristics into compact regions, which
helps to reduce the computational complexity and improve
the accuracy of unmixing. The deep autoencoder network
is trained to learn a low-dimensional representation of the
hyperspectral data, which captures the underlying nonlinear
mixing behavior. The network is trained using an unsupervised
learning approach based on adversarial autoencoder networks.
The architecture of the proposed BNNet Network is illustrated
in Fig. 1.

III. EXPERIMENTAL RESULTS

The proposed method is evaluated on both synthetic and real
hyperspectral datasets. In the synthetic dataset experiments, the
proposed method achieves superior unmixing accuracy com-
pared to several state-of-the-art algorithms, including MLM,
semi-NMF, NAE, DeepGUn, FCLS, and BNNet. The results
demonstrate the effectiveness of the deep autoencoder network
in capturing the nonlinear mixing behavior and accurately es-
timating the abundance fractions of endmembers. The specific
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Fig. 1. The architecture of the proposed BNNet Network

quantitative unmixing accuracy values on Cuprite dataset are
shown in Table I.

TABLE I
COMPARISON OF UNMIXING ACCURACY BETWEEN ENDMEMBER SAD

AND PIXEL RECONSTRUCTION RMSE ON CUPRITE DATASET.

Endmember MLM semi-NMF NAE DeepGUn FCLS BNNet
Alunite 0.1304 0.1198 0.1201 0.1197 0.0992 0.1093

Andradit 0.0992 0.1142 0.1066 0.911 0.1639 0.0924
Buddingtonite 0.1108 0.1293 0.1003 0.1097 0.1687 0.1003
Dumortierite 0.1085 0.1273 0.1131 0.1092 0.1893 0.0961
Kaolinite-1 0.0826 0.1003 0.0819 0.0799 0.0804 0.0828
Kaolinite-2 0.0813 0.0981 0.0794 0.0732 0.0792 0.0700
Muscovite 0.0937 0.0982 0.1079 0.1121 0.1080 0.1086

Montmorillonite 0.0645 0.0597 0.0616 0.0652 0.0651 0.0501
Nontronite 0.1294 0.1284 0.1254 0.1071 0.1437 0.1303

Pyrope 0.0806 0.0887 0.0825 0.0833 0.0803 0.0796
Sphene 0.0577 0.0738 0.0638 0.0611 0.0532 0.0563

Chalcedony 0.1390 0.1291 0.1396 0.1297 0.1496 0.1399
Average SAD 0.0981 0.1059 0.0991 0.0932 0.1070 0.0901

RMSE 0.1021 0.1132 0.0872 0.0721 0.1418 0.0572
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