
  

  

Abstract—Attention-based Vision Transformers (ViTs) must 

be pre-trained on large datasets to give high performance. We 

propose a ViT with a dilated convolutional structure in the form 

of source-target attention (STA) and demonstrate that the 

proposed ViT performs better for remote sensing datasets and 

acquires attention much as the original ViTs pre-trained on a 

large dataset, even after pre-training on a small dataset. Our 

results suggest that the proposed structure efficiently acquires 

attention suitable for remote sensing from small datasets. 
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I. INTRODUCTION 

A vision transformer (ViT) is a type of neural network that 
must be pre-trained on a large, labeled dataset to provide high-
performance image recognition. ViTs are considered to be of 
limited applicability in remote sensing applications, which 
handle uncommon images that are difficult to label (e.g., 
synthetic aperture radar images). A ViT with a convolution 
input layer performs well while maintaining low training costs 
(e.g., [1]). However, network structures in which the 
convolutional process is incorporated into the ViT middle 
layer have rarely been investigated. We propose a network that 
introduces dilated convolution inputs in the form of source-
target attention (STA) [2] to the ViT middle layer (ViT–STA).  

II. PROPOSED METHODS 

The ViT [1] consists of a patch-token generator, self-
attention (SA) encoders, and a multilayer perceptron (MLP) 
head (Fig. 1, excluding the shaded area). The patch-token 
generator divides an input image into sub-images as a patch 
(P) token. The SA encoders calculate attention using the query, 
key, and value calculated from a P token with a class token and 
position embedding. ViT predicts a class of  input from the 
encoder outputs through the MLP head. We proposed ViT-
STA, where an STA encoder replaces one SA. The STA 
encoder receives dilated-convolutional (DC) tokens and P 
tokens through different pathways (Fig. 1 shaded area). To 
calculate attention, a query is calculated from a DC token, and 
the key and value are calculated from a P token.  

III. FINDINGS 

We prepared two pre-training datasets with different data 
sizes from down-scaled Image Net: a large dataset (900,000 
data) and a small dataset (450,000 data). The original ViT with 
six SA encoders, and ViT–STA E𝑛, where the 𝑛th SA encoder 
is replaced with an STA encoder, were pre-trained on the large 
or small dataset. 
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Figure 1.  Structure of the Vision Transformer (ViT)  

with source–target attention (STA) 

After that, they were fine-tuned on the EuroSAT remote 
sensing dataset [3]. In Fig. 2, the accuracies of the ViT-original 
were more than 3% lower during pre-training on the small 
dataset than during pre-training on the large dataset. 
Conversely, the accuracies of ViT-STA E3–E6 exceed those 
of ViT-original networks. Furthermore, the attention weights 
for test images in ViT-STA are similar to that of the ViT-
original pre-trained on the large dataset.  
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Figure 2.  Network performances (left) and attention weights (right)  

acquired through fine-tuning on the EuroSAT remote sensing dataset. 

IV. CONCLUSION AND RECOMMENDATIONS 

The proposed ViT-STAs provide better performance on 
the remote sensing dataset even when the pre-training data 
were halved from the large dataset through acquiring similar 
attention to those of a ViT pre-trained on the large dataset 
efficiently. These results suggest that the proposed structure 
enables ViT to acquire attention that improves classification 
for remote sensing efficiently from small datasets.  
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