Toward Neural Light-Field Compression

Yuya Ishikawa Nagoya University Chihiro Tsutake Nagoya University Keita Takahashi Nagoya University Toshiaki Fujii Nagoya University

Abstract—We propose a data compression method for a light field via a compact and computationally-efficient neural representation. We experimentally show that our method achieves a promising rate-distortion performance.

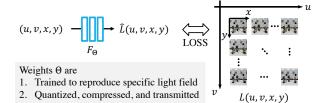
Index Terms—Light field, Compression, Neural representation

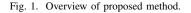
I. INTRODUCTION

A light field (a set of multi-view images of a target 3-D scene) has been utilized for various applications such as 3-D display and post-capture refocusing. Due to the large data amount, data compression for a light field is an important research issue. For this purpose, we investigate to use a neural representation [1], [2], a neural network trained to reproduce the target light field; the network parameters are quantized, entropy-coded, and transmitted to the remote site.

Our method is significantly different in concept from the traditional approaches where a light field is encoded as a set of images or a video (as a pseudo-temporal sequence) using off-the-shelf image/video codecs. Moreover, we can generate arbitrary views directly from the neural representation, which is impossible with the traditional approaches. Shi et al. [3] used a neural representation of a 3-D scene called NeRF [1] for data compression. However, a NeRF is computationally expensive, and thus, impractical for low-power devices. In contrast, our method is implemented on a more computationally-efficient neural representation called SIGNET [2], but still achieves a promising rate-distortion performance.

II. PROPOSED METHOD


As shown in Fig. 1, the target light field is written as L(u, v, x, y) where (u, v) and (x, y) denote the viewpoint and pixel. We use a neural network with trainable parameters Θ :


$$F_{\Theta} \colon (u, v, x, y) \longrightarrow \hat{L}(u, v, x, y) \tag{1}$$

which takes the coordinate (u, v, x, y) as input and directly regresses the corresponding pixel value $\hat{L}(u, v, x, y)$. The network is trained to minimize the regression loss as

$$\Theta^* = \underset{\Theta}{\operatorname{argmin}} \sum_{u,v,x,y} \|L(u,v,x,y) - F_{\Theta}(u,v,x,y)\|^2 \quad (2)$$

Once the training is finished, all we need to reconstruct L(u, v, x, y) is the set of the network parameters, Θ^* . Therefore, Θ^* is quantized, entropy-coded, and transmitted to the remote site. For this purpose, we develop an adaptive quantization scheme that can control the trade-off between the bitrate (data size) and reconstruction quality. Since F_{Θ} can be queried at arbitrary (u, v), arbitrary views can be rendered directly from the nueral representation.

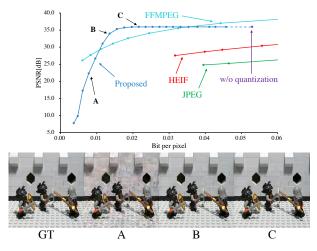


Fig. 2. Rate-distortion performance and some visual results.

III. RESULTS AND DISCUSSION

We trained a SIGNET-based network on a light field with 9×9 views, applied our compression method, and synthesized 17×17 views (with viewpoint interpolation) from the compressed data. In Fig. 2, we compared the rate-distortion performance of our method against the traditional approaches including image-based coding (JPEG and HEIF) and videobased-coding (FFMPEG). As can be seen, our method outperformed them. We also present some visual results obtained with our method. For the case at "B" on the graph, the compressed Θ^* takes only 513k bytes, which is approximately 0.056 % of the original size of 17×17 views (909M bytes).

REFERENCES

- B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, R. Ng: "NeRF: Representing scenes as neural radiance fields for view synthesis," ECCV, 2020
- [2] B. Y. Feng, A. Varshney: "SIGNET: Efficient neural representation for light fields," ICCV, 2021
- [3] J. Shi, C. Guillemot, "Light Field Compression Via Compact Neural Scene Representation," ICASSP, 2023