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Abstract—We propose using a voxel grid as the explicit 

representation of the radiance field, combining a shallow 

network to interpret the spacial features. The voxel is further 

decomposed into axis-align feature vectors using the tensor 

decomposition technique. Therefore, the space complexity of 

synthesis is reduced from O(n3) to O(n). We also benefit from 

the mature 2D generative adversarial network and utilize the 

network structure in our 1D feature vector generator. 

I.  INTRODUCTION 

Recently, 3D-aware generative method that based on 

neural radiance field are widely explored. However, the 

inherent characteristics of volume rendering and deep 

neural networks produce poor training and execution 

speeds. However, instead of direct 3D generation, recent 

3D-aware GANs have shown preliminary success on 

multi-view-consistent image synthesis. This category of 

GANs combines 3D-structure aware generators, 

differentiable renderers, and adversarial training processes 

to capture 3D information. The most iconic pioneers are 

models that based on Neural Radiance Fields (NeRF) [1]. 

NeRFs are robust to single scene representation, but they 

are slow to query the coordinates and thus impracticable 

for high-resolution image generation. Some researches 

take advantage of 2D upsampling networks to enhance the 

image quality, but doing so damages the 3D consistency of 

scenes. 

II.  METHOD AND EXPERIMENTS 

Our goal is to embrace the efficiency of the voxel 

representations, but at the same time escape from memory 

loading. Inspired by TensoRF [2], we model the voxelated 

radiance fields as a 4D tensor. We then apply traditional CP 

decomposition by factorizing the tensor into three rank-

one components. The space complexity of our proposed 

generator is thus reduced to one dimension, providing a 

better scalability than previous works. Our final model 

attains comparable image fidelity to recent state-of-the-art 

3D-aware GANs, and reduces one-third of memory usage 

while training. The full network architecture is shown in 

Figure 1. G denotes the feature generator, S denotes the 2D 

super resolution network, and D denotes the discriminator, 

respectively. f ∈ R32 and σ ∈ R are the feature vector and 

the density decoded by the feature decoder. 

Figure 2 demonstrates the multi-view consistency 

result of our network. Our proposed method can capture 

the underlying 3D information from the dataset and 

produce multi-view consistent results without direct 3D 

supervision. We also compare the run-time rendering speed 

of our model in Table 1. The speed is evaluated in 

millisecond per image. Because our network is roughly 

twice as fast as EG3D’s, there is a decent trade-off between 

synthesis quality and rendering speed. 

 

Figure 1: Network Architecture 

 

Figure 2: Experimental results of Multi-View Consistency. 

Table 1: Comparison with previous methods. 

 FFHQ AFHQ SP 

π-GAN 85 47 608 

GIRAFFE 31.5 16.1 5 
EG3D 4.8 3.9 27 

VoxGRAF 14.4 9.6 200 

Our Method 12.7 6.8 14 

ps: The FID for FFHQ and AFHQ Cats, the rendering speed per image. 

III.  CONCLUSIONS 

Our approach leverages both the expressiveness of 

the implicit network and the run-time efficiency of the 

explicit voxel grid. To further reduce the memory cost 

introduced by the explicit voxel grid representation, we 

utilize tensor decomposition to factorize the voxel into 

three 2D vector components. Our generator adopts the 

network structure of the state-of-the-art style-based 2D 

generator, and thus inherits the expressiveness of the 

structure. To avoid 3D inconsistency caused by the 2D 

super-resolution network, we augment the input channels 

of our discriminator to 6 channels to pass in both the 

rendering result of raw volume rendering and the neural 

rendering. 
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